
Revisit Behavior in Social Media: The Phoenix-R Model and Discoveries

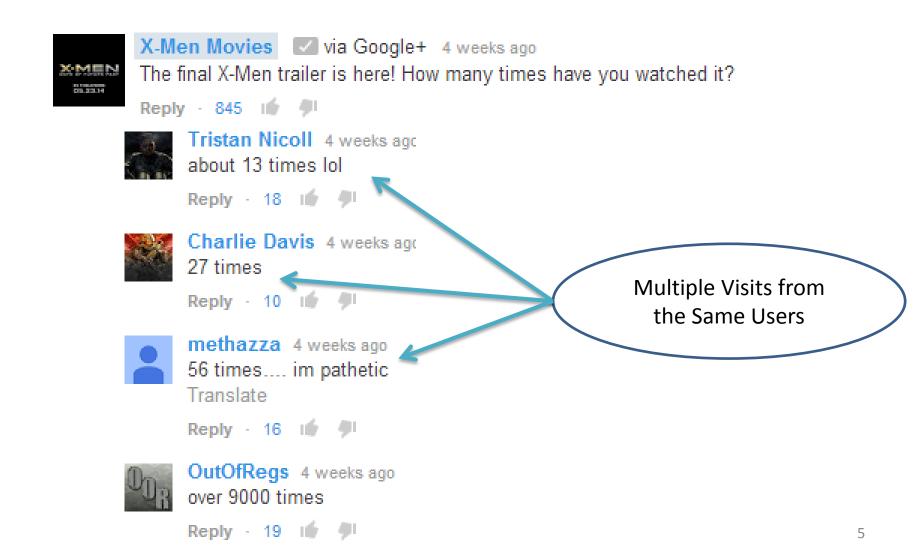
Flavio Figueiredo, Yasuko Matsubara, Bruno Ribeiro, Jussara M. Almeida, Christos Faloutsos

Institute for Web Research (InWeb) @ DCC-UFMG

Databases Group @ CMU

How should we account and model information popularity online?

How should we account and model information popularity online?



Audience: Unique users

X-Men Movies via Google+ 4 weeks ago The final X-Men trailer is here! How many times have you watched it? Reply · 845 if 🔎

Audience vs Visits

Measuring both visits and audience (unique users) have their benefits

- How many users watched my ad?
 - Exposure
 - Revenue
- How many times was my ad watched?
 - Caching
 - Sharding and content provisioning
- However...
 - Understanding and modeling both effects is still an open issue

Our Study

- Understanding and modeling revisit behavior in social media
- Understanding
 - Characterization of millions of user activities
 - User played/watched/visited a social media object at a certain time
- Modeling

The Phoenix-R model for popularity time series

Datasets

• User Activity

User, Object (song/tweet/video), Time stamp

• All of the datasets range from months to years

Dataset	User Activities	Description
MMTweet (Million Musical Tweets)	Little over 1 million	Tweets declaring songs which users listen to
Twitter	576 million	Hashtags
LastFM	19 million	Plays on artists and songs
YouTube	-	3 million daily time series

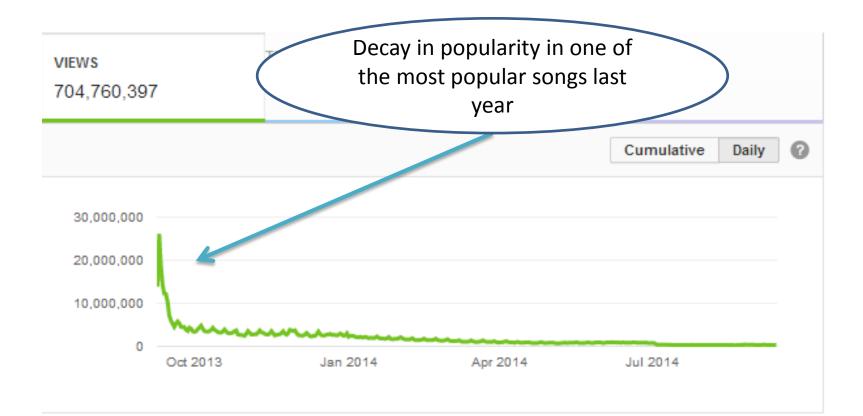
Discoveries

Discoveries

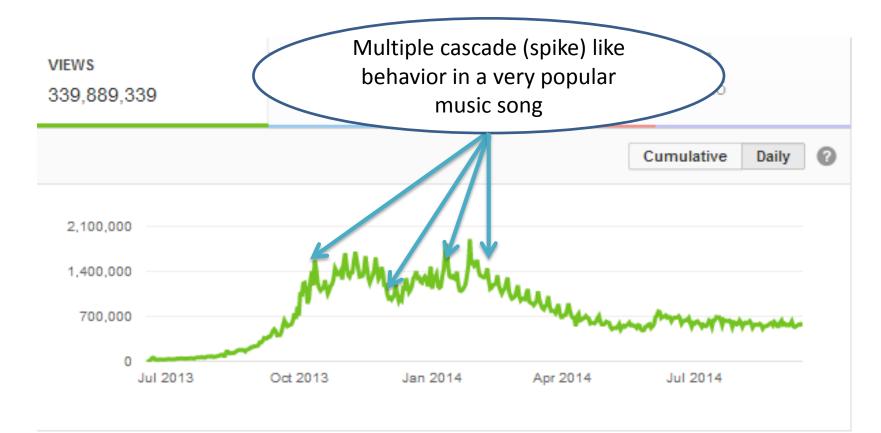
Relationships between audience (unique users) and revisits

Dataset	Median #Revisits #Audience	Median #Revisits #Total Visits	% of cases #Revisits > #Audience
MMTweet	0.68	0.40	33%
Twitter	1.70	0.62	66%
LastFM	25.39	0.96	100%

Discoveries on Smaller time Scales


- Isolate the effect of users coming back to the datasets after long periods
- Daily Time Windows

Dataset	Median # <i>Revisits</i>
	#Audience
MMTweet	0.83
Twitter	2.50
LastFM	28.0


What we know so far

- Users revisit the same object
 - On some datasets (LastFM and Twitter) most of visits are returning users
- Revisits are common on small time scales
 Above results hold
 - Above results hold
 - Complements [Anderson2014]
- Users abandon content but it may take a long time
 - Preying behavior from [Ribeiro2014]

Users eventually stop visiting

Some objects behave like a sum of multiple cascades

How de we model these time series?

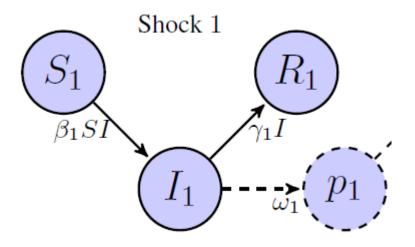
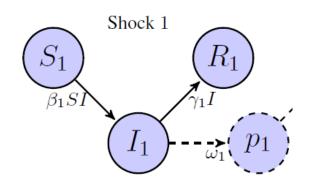
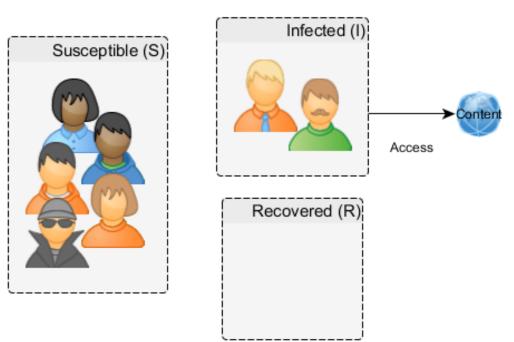
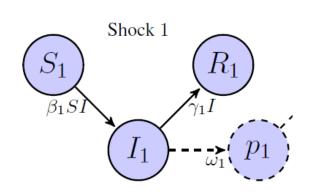

The Phoenix-R Model!

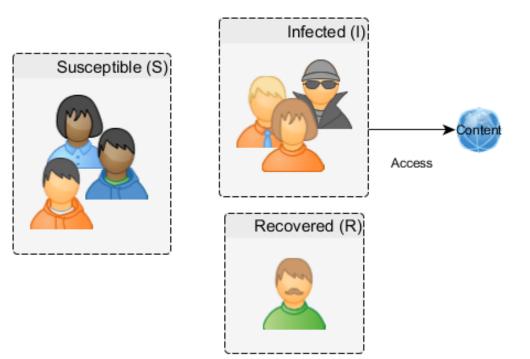
Table 1: Comparison of PHOENIX-R with other approaches

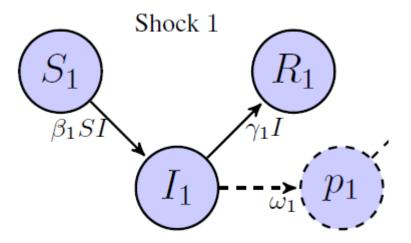

	Revisits	Non-Linear	Forecasting	Multi Cascade
SI [12]		\checkmark		
SpikeM [18]		\checkmark	\checkmark	
TemporalDynamics [21]			\checkmark	
PHOENIX-R	\checkmark	\checkmark	\checkmark	\checkmark

Phoenix-R Explained

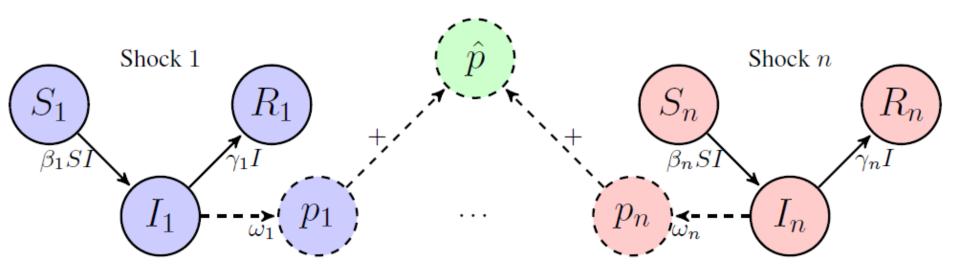

- Single shock (cascade) model
- Epidemiology model


Single Shock


- Starting with some Susceptible and Infected Individuals
- The Infected access the content


Single Shock

- At the next time tick some Infected recover
- Some Susceptible are infected by the previous infected
- We now expect more visits (more infected)


Single Shock Equations

$$\begin{split} S(t) &= S(t-1) - \beta S(t-1)I(t-1) \\ I(t) &= I(t-1) + \beta S(t-1)I(t-1) - \gamma I(t-1) \\ R(t) &= R(t-1) + \gamma I(t-1) \\ p(t) &= \omega I(t). \end{split}$$

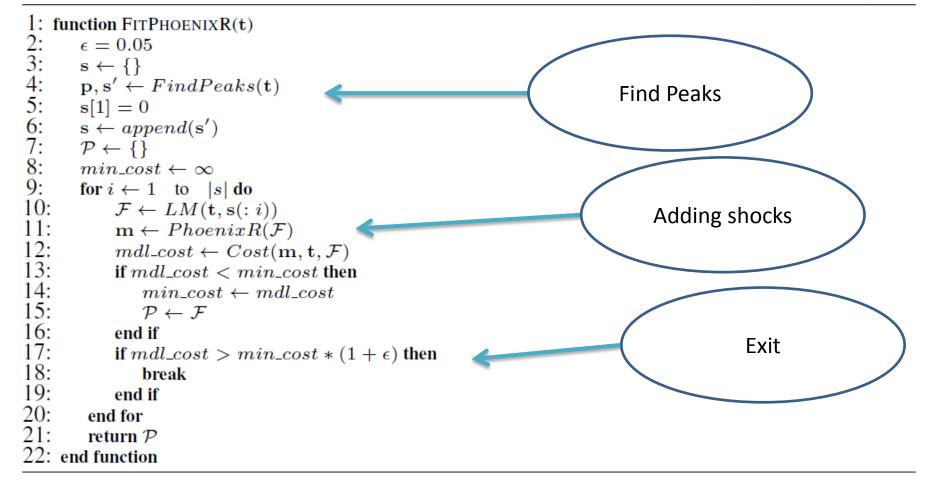
Multiple Shocks

Simplifying assumption that each shock is a new population (set of users)

$$\hat{p}(t) = \sum_{i,s_i \in \mathcal{S}} p_i(t - s_i) \mathbb{1}[t > s_i]$$

How many shocks to add?

- A perfect model (zero error) can be created by
 - Letting each access be a single user which immediately recovers
 - However, lot's of parameters (cost)
- Using Minimum Description Length (MDL)


 $Cost(\mathbf{t}; \mathcal{P}) = \log^* n + Cost(\mathcal{P}) + Cost(\mathbf{t} \mid \mathcal{P})$

How do we fit a time series?

- Step 1:
 - Identify Peaks using Wavelets
 - Intuitively, each peak is a candidate shock (cascade)
 - Linear
- Step 2:
 - Add each peak sorted by height to the model
 - If the MDL decreases, accept peak
- Step 3:
 - Stop when the MDL stops decreasing

Linear runtime (time series length) and parameter free algorithm

Algorithm 1 Fitting the PHOENIX-R model. Only the time series is required as input.

How good is Phoenix-R?

- Comparing Phoenix-R with two state of the art alternatives
 - RMSE (smaller is better)

	PHOENIX-R vs. Ten	poralDynamics (daily series)	PHOENIX-R vs. S	PHOENIX-R vs. SpikeM (hourly series)		
	RMSE Phoenix-R	RMSE TemporalDynamics	RMSE Phoenix-R	RMSE SpikeM		
MMTweet	2.93 (± 0.23)	4.18 (± 0.49)	-	-		
LastFM	$7.09 (\pm 0.23)$	8.31 (± 0.32)	-	-		
Twitter	$72.05 (\pm 6.08)$	$194.79 (\pm 20.49)$	$10.83 (\pm 1.61)$	9.77 (± 2.24)		
YouTube	280.58 (± 29.29)	3429.19 (± 577.76)	-	-		

Phoenix-R is always better or just as good

How good is Phoenix-R?

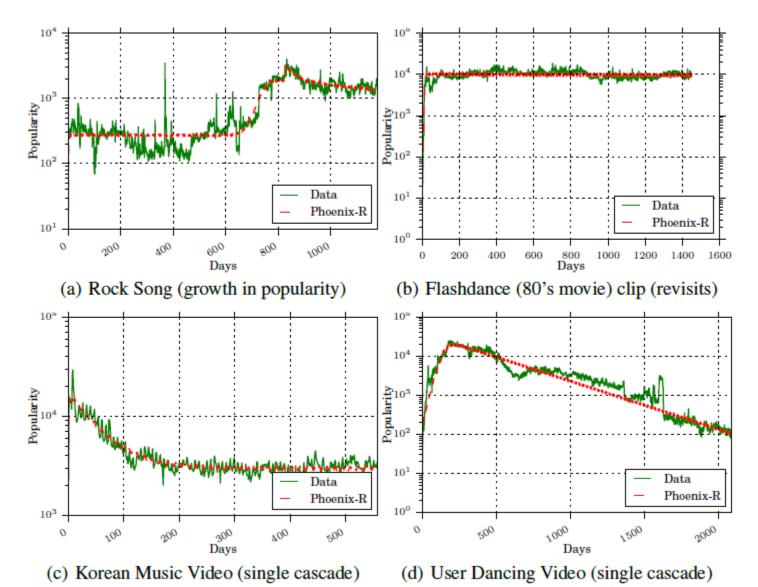
- Comparing Phoenix-R with two state of the art alternatives
 - RMSE (smaller is better)

	PHOENIX-R vs. Tem	poralDynamics (daily series)	PHOENIX-R vs. S	PHOENIX-R vs. SpikeM (hourly series)			
	RMSE Phoenix-R	RMSE TemporalDynamics	RMSE Phoenix-R	RMSE SpikeM			
MMTweet	2.93 (± 0.23)	4.18 (± 0.49)	-	-			
LastFM	$7.09 (\pm 0.23)$	$8.31 (\pm 0.32)$	-	-			
Twitter	72.05 (± 0.08)	$194.79 (\pm 20.49)$	$10.83 (\pm 1.61)$	9.77 (± 2.24)			
YouTube	280.58 (± 29.29)	3429.19 (± 577.76)	-	-			

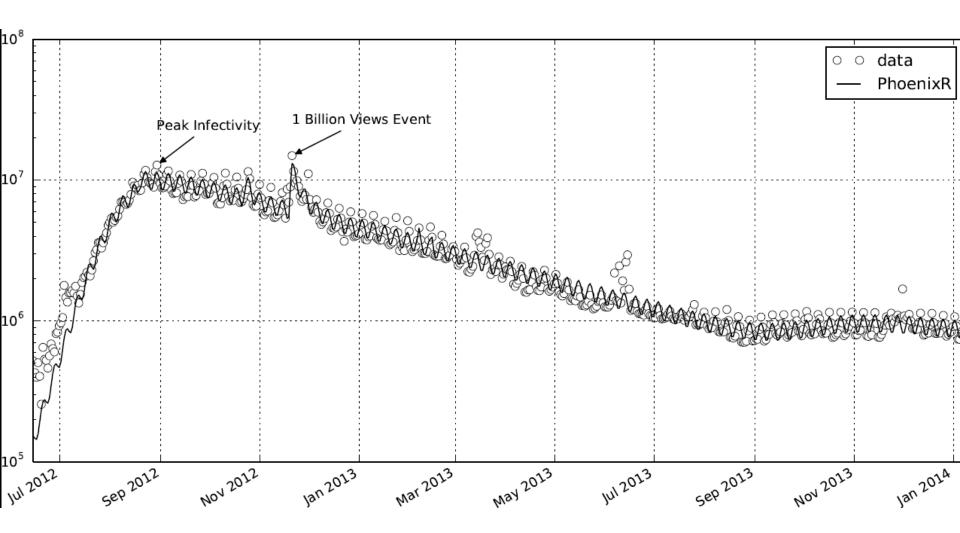
Phoenix-R is always better or just as good

Phoenix-R is also good at forecasting

- RMSE (smaller is better)
- 1, 7 or 30 days ahead forecasting
- Ties on very linear time series


				• •						
			5%			25%		50%		
		1	7	30	1	7	30	1	7	30
MMTweet	Phoenix R TempDynamics	11.61 17.07	12.78 17.41	15.15 16.52	8.67 9.63	6.74 10.78	8.82 14.46	4.08 25.19	6.87 23.08	13.58 30.39
Twitter	Phoenix R TempDynamics	53.68 104.45	60.78 129.36	215.76 255.69	132.21 643.39	135.15 643.83	210.30 786.50	75.58 420.74	229.59 587.86	254.93 598.75
LastFM	Phoenix R TempDynamics	2.37 6.47	3.97 7.03	5.71 8.00	8.60 11.15	12.06 14.62	14.66 17.86	11.34 14.91	15.03 18.15	15.43 18.80
YouTube	Phoenix R TempDynamics	91.62 3560.65	106.38 3631.09	138.88 3661.81	83.76 5091.82	113.14 5107.82	147.04 5143.70	127.53 4136.14	97.97 4139.73	115.97 4169.26

Phoenix-R is also good at forecasting


- RMSE (smaller is better)
- 1, 7 or 30 days ahead forecasting
- Ties on very linear time series

		5%				25%			50%		
		1	7	30	1	7	30	1	7	30	
MMTweet	Phoenix R TempDynamics	11.61 17.07	12.78 17.41	15.15 16.52	8.67 9.63	6.74 10.78	8.82 14.46	4.08 25.19	6.87 23.08	13.58 30.39	
Twitter	Phoenix R TempDynamics	53.68 104.45	60.78 129.36	215.76 255.69	132.21 643.39	135.15 643.83	210.30 786.50	75.58 420.74	229.59 587.86	254.93 598.75	
LastFM	Phoenix R TempDynamics	2.37 6.47	3.97 7.03	5.71 8.00	8.60 11.15	12.06 14.62	14.66 17.86	11.34 14.91	15.03 18.15	15.43 18.80	
YouTube	Pnoenix R TempDynamics	91.62 3560.65	106.38 3631.09	138.88 3661.81	83.76 5091.82	113.14 5107.82	147.04 5143.70	127.53 4136.14	97.97 4139.73	115.57 4169.26	

Examples of Phoenix-R at work

Examples of Phoenix-R at work

Conclusions

- Phoenix-R model for revisits and multiple cascades
- Based on discoveries from real data
- Scalable linear fitting algorithm
 On time series length

• Useful for predictions