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ABSTRACT
A common live debate among scholars regards the
popularity, productivity and impact of research. This paper
aims to contribute to such discussion by quantifying the
impact of various academic features on a scholar popularity
throughout her career. Using a list of over 2 million
publications in the Computer Science research area obtained
from two large digital libraries, we analyze how features that
capture the number and rate of publications, number and
quality of publication venues, and the importance of the
scholar in the co-authorship network relate to the scholar
popularity. We also investigate the temporal dynamics of
scholar popularity, identifying a few common profiles, and
characterizing scholars in each profile according to their
academic features.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Citation analysis, scholar popularity dynamics, academic
scholar features

1. INTRODUCTION
What factors contribute to a successful career in research?

This is a fundamental and broad question that draws the
attention of all scholars. Success in research can be assessed
in terms of various measures. The acknowledgement by
peers of the value of a researcher’s publications (e.g., by
citing them) is one of the most sought-after measures of
scholarly success, as it can be seen as an estimate of her
influence and visibility in the community, and ultimately of
her scholarly popularity [10].

Investigating the factors that impact the popularity of a
scholar can shed light into proactive actions that might guide
decisions to shape a career in research. Moreover, from a
system standpoint, it can draw useful insights into the design
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of cost-effective popularity prediction methods, which, in
turn, can be exploited for improving various services (e.g.
expert or academic collaboration recommendation services
[4]). Some questions of interest are: to which extent do the
quantity and the quality of the publication venues impact
a scholar popularity? To which extent is the number of
publications related to popularity? What is the role that the
co-authorship network plays in the scholar popularity?

Influence, productivity and popularity in research has
already been tackled in various prior studies since the early
20th century [6, 25]. For example, many authors have
characterized influential publications [22, 32], some with the
goal of designing models to predict the number of times
a particular piece of work will be cited [5, 7, 21, 34].
Others have analyzed various impact factors to evaluate the
influence of publication venues (e.g., journals) [3, 12] and
researchers [15, 11, 29] from citations.

In this paper, our goal is to investigate and quantify the
factors that impact the popularity of a scholar during her
career. Complementing prior analyses [31, 10, 34], we intend
to assess the impact of various academic characteristics, or
features, on the popularity a scholar achieves during the
career. We also want to study the temporal popularity
dynamics of various scholars, identifying a few common
profiles, and characterizing scholars in each profile according
to their popularity and academic features.

As in [27, 13, 31], we use the total number of citations to
estimate the popularity of a scholar. Although other indices,
such as weighted metrics [32, 10] and PageRank [3, 33], could
be adopted, our choice is based on two factors. Firstly,
some authors [27] have argued that citation counts are
better indicators of the scientific contribution of researchers,
disciplines or nations than impact factors (such as the
h-index [15]). Secondly, considering qualitative aspects of
the research is very subjective and would require the use
of metrics with debatable biases and criticisms [14, 12, 18].
Thus, we assess scholar popularity by the total number of
citations, leaving the analysis of other indices to future work.

Specifically, we focus on scholars of a specific research
field - Computer Science, and crawl statistics about their
publication records from two large digital libraries, namely
ArnetMiner1 and Microsoft Academic2. We start by
studying how various academic features3 are correlated
with the popularity of a scholar. The following features
are analyzed: total number of publications, yearly rate

1http://arnetminer.org
2http://academic.research.microsoft.com
3Features that reflect the academic activity of a scholar.



of publications, number of distinct publication venues as
well as the venues’ quality, and the importance of the
author in the co-authorship network (estimated by various
centrality metrics). We also explore regression based models
to quantify the relative importance of each feature to the
final popularity of the scholar. Moreover, since the impact
of a feature may vary over time, as the scholar’s career
progresses, these analyses are performed separately for
different groups of scholars, categorized based on the number
of years of academic experience.

Next, we employ a time series clustering algorithm named
K-Spectral Clustering [35], recently proposed to study the
popularity of online content, to identify profiles of scholar
popularity dynamics. We also characterize scholars in each
profile in terms of their popularity and academic features.

Our results indicate that although most analyzed features
are strongly correlated with popularity, only two features
are required to explain practically all the variation in
popularity across different scholars, even considering only
the less experienced scholars. These two features are: the
total number of publications and the average quality of the
publication venues of the scholar (estimated by the average
number of citations per publication of the venue). Out of
them, the number of publications is the most important one,
with a major impact on popularity which increases with
the scholar’s experience. The relative importance of the
average quality of the publication venues in turn decreases
for the most experienced scholars. We also uncovered five
different profiles of popularity temporal dynamics. Three
profiles correspond to scholars who succeed in becoming
more and more popular with time, whereas the other two
correspond to scholars whose popularity curve exhibits a
clear decay after a popularity peak. Our characterization of
these profiles also suggest that the most popular scholars,
who fall in the first three profiles, are typically those who
keep publishing over time.

The rest of this paper is organized as follows. Section 2
discusses related work, and Section 3 presents the datasets
and academic features analyzed. The assessment of the
importance of each feature to scholar popularity is presented
in Section 4, whereas profiles of scholar popularity dynamics
are identified and characterized in Section 5. Conclusions
and future work are offered in Section 6.

2. RELATED WORK
Quantitative measures of research have long been

studied. Cason and Lubotsky [6] conducted one of the
earliest citation analysis studies with focus on measuring
dependences among journals. A few decades later, Pinski
and Narin [25] evaluated the influence of journals by taking
both the number of citations and the importance of the
citing journal into account. Since then, various studies
have proposed techniques to measure and/or analyze the
influence, popularity or productivity in scientific research.

Some authors focused on proposing different metrics of
research performance. For example, Ding and Cronin [10]
distinguished between weighted and unweighted citation
counts, using the former as a measure of scholar prestige
and the latter as a measure of scholar popularity. As
argued in [18], there are advantages and disadvantages
associated with each type of metric, as each one has its
own bias. For instance, the impact factor is a widely used
measure to compare the influence of publication venues [12].

However, impact factor does not reflect the influence of
individual papers and authors [14, 12]. Similarly, the
h-index is commonly used to measure the performance of
researchers or publication venues [15]. However, it might
lead to counter-intuitive results due to its attempt to bring
together measures of productivity (e.g., total number of
papers, references, and citations) and impact factor under
a single denominator [18]. Accordingly, novel approaches
to measure prestige or influence in research have also
been proposed, including improved versions of h-index,
such as g-index [11] and hm-index [29], automatically
learned metrics based on machine learning techniques [2],
as well as customized indices sensitive to the productivity of
researchers in different research fields [19, 8].

Unlike these prior studies, our goal is not to propose
metrics of research performance, but rather assess the
importance of various factors to this performance as well
as characterizing how the academic performance of scholars
evolve over time. To that end, we focus on scholar popularity
estimated by the total number of citations (as defined in
[10]). Though simple and easy to compute, this metric
has been shown to be very important for various types
of analyses. For instance, in [27], the authors analyzed
the productivity and impact of more than 700 biomedical
researchers in Finland from 1966 to 2000, showing that
actual publication and citation counts are better indicators
of the scientific contribution of researchers, disciplines, or
nations than impact factors. In [13], the authors used
unweighted citation counts (i.e., popularity) to analyze
the impact of experience and prestige on the number of
references scholars use in their publications.

Others have tackled the prediction of popularity of
publications or scholars. For example, in [5, 7, 21],
the authors used measures computed after a paper was
published (e.g., number of downloads) to predict its future
citation count. Yan et al., in turn, exploited only features
available at publication time, extracted from ArnetMiner,
as inputs to linear and support vector regression models
to perform such predictions [34]. In contrast, Acuna et
al. [1] presented a model to predict the future h-index of
a scholar using a linear combination of features related to
the scholar’s publications, citations, and funding. Our work
complements these prior studies, as it aims at assessing the
relative importance of various features to scholar popularity,
drawing insights that can help improving existing prediction
solutions [1] as well as designing new methods.

Another set of related studies applied complex network
metrics to the co-authorship graph to determine the
influence of a scholar within a research community [24].
Liu et al. [20] proposed AuthorRank, a weighted version of
PageRank, to match the committee members of the Digital
Libraries research community within its co-authorship
graph. PageRank has also been exploited to assess the
relative importance of publications, journals or authors
in the co-authorship and citation networks [3, 22, 33].
Similarly, other centrality metrics, such as degree, closeness
and betweenness, have also been shown to be significantly
correlated with citation counts [31], whereas some recent
efforts focused on structural properties that reflect the
behavior of authors in the co-authorship network, such
as interactions with authors in the largest connected
component and reciprocity [17, 23]. Our work complements
those studies as we are interested in comparing and



quantifying the importance of various scholar features to
scholar popularity dynamics, including but not restricted to
features related to the co-authorship network.

Finally, we are aware of only a couple of efforts to analyze
the evolution of scholar popularity over time. Cronin
and Meho [9] explored the relationship between scholar
creativity, estimated by the number and total citation
count of high impact works, and (both chronological and
professional) age of 12 important scholars in the Information
Science field. They found that creativity is expressed at
different stages and with different intensities in the careers
of those scholars. Ding and Cronin [10] analyzed the
popularity and the prestige of the top 40 ranked authors
in the Information Retrieval field for four “time bands”
in their careers. Their main conclusion is that, unlike
the prestige ranks of scholars whose behavior is stable,
popularity ranks change over time. Although those studies
provide interesting insights into the popularity evolution
of successful scholars, they are focused on a small set of
leading researchers in their fields. Thus, they do not identify
common profiles of popularity dynamics across a large set
of scholars, with various levels of popularity. We try to
fulfill this gap by making use of the K-Spectral Clustering
(KSC) algorithm [35], which was recently proposed to study
popularity dynamics of on-line content. To our knowledge,
we are the first to use such advanced tools to better
understand scholar popularity dynamics.

3. METHODOLOGY
In this section we present the datasets (Section 3.1) and

the academic features (Section 3.2) analyzed in this work.

3.1 Datasets
We use datasets obtained from two large and very popular

academic digital library services. The first dataset is
publicly available at the ArnetMiner (AM) service4, which
is a free on-line service used to index and search academic
social networks. The dataset consists of a list of publications
from the Computer Science community, covering the period
from 1936 to 2013. Each instance in the dataset is specified
by the following attributes: author names, publication
venue, year, total number of citations, and list of references.
In total, our AM dataset includes 2,244,018 publications by
831,763 authors in 8,274 venues, which, collectively, received
38,770,182 citations. We use this dataset to characterize
the importance of various academic features to scholar
popularity, estimated by the total number of citations the
scholar received in all her publications in this dataset.

Recall that we are also interested in characterizing the
popularity dynamics of different scholars. We could estimate
the popularity of each author in each year from the
references attribute in the AM dataset, and thus build a
set of popularity time series. However, we noticed that this
attribute is not reliable as many publications have empty
lists of references. Indeed, the popularity of each author
inferred from this attribute was often much smaller than
the aggregated popularity computed by summing up the
citations of all the author’s publications in the dataset.

Given that it was not possible to create consistent and
accurate popularity time series for each author using the
AM dataset, we relied on another data source, namely the

4http://arnetminer.org/citation

(a) All scholars (b) Scholars in each
experience group

Figure 1: Scholar popularity distribution.

Microsoft Academic Research (MS-AR) platform. Each
author name that appeared in the AM dataset was
submitted as a query to the MS-AR service to retrieve the
citation time series and publication time series of the author.
We considered the most common among all aliases provided
by AM for the author name, and the best match returned by
MS-AR, which also has its own disambiguation mechanisms
for queries5. We successfully retrieve the time series for
around 75% of the author names (i.e, 624,784 authors).

We note that in both datasets, but particularly in the AM
dataset, a large number of scholars had a single publication.
We removed these scholars from our datasets, focusing only
on scholars with at least 2 publications. After this filtering,
we were left with 402,720 scholars in the AM dataset and
437,446 popularity time series in the MS-AR dataset.

We also note that there are discrepancies in the total
citation counts of the same author in both datasets, which
might be due to different citation coverages of each digital
library. However, we could find no clear trend towards a
larger coverage of most authors in a single dataset6. We
deal with such discrepancies in our investigation by focusing
each analysis on a single dataset.

Figure 1-a) shows the distribution of popularity (number
of citations) for all scholars in our AM dataset. Note
the logarithm scale in both axes. The figure shows that,
consistently with prior results [13], the distribution of
scholar popularity is heavy tailed. This heavily skewed
distribution may reflect a natural heterogeneity across
scholars, but it may also reflect a bias due to different levels
of experience. Thus, we split the scholars in each dataset
into 5 experience groups based on their time of research
activity (up to 2013). We estimate the time of activity t of a
scholar by the year of her first publication in the AM dataset,
and group scholars according to the following ranges: t ≤ 5
years; 5 < t ≤ 10 years; 10 < t ≤ 15 years; 15 < t ≤ 20
years; and t > 20 years. Table 1 provides the numbers of
authors (AM dataset) and popularity time series (MS-AR
dataset) in each experience group, after the aforementioned
filtering. Moreover, Figure 1-b) shows that the distribution
of scholar popularity remains very skewed even considering
a single experience group, for all groups. Thus, there is a lot
of heterogeneity, in terms of popularity, even among scholars
with approximately the same time of experience.

5In other words, we relied on the name disambiguation
solutions provided by both MS-AR and AM services [30,
28] to help solving possible author name inconsistencies.
6Indeed, we analyzed the coverage of each dataset for a
few authors and did observe a significant number of missing
publications in both datasets.



Table 1: Distribution of scholars and popularity
time series across experience groups in the filtered
datasets (ranges specify time of research activity).

[0;5] (5;10] (10;15] (15;20] (20,∞)
# authors 53,642 148,567 91,932 50,435 58,144

# popularity 76,980 133,501 99,234 60,521 67,210
time series

Table 2: Scholar academic features.
Notation Description
nPubs total number of publications
yPubRate yearly publication rate
nV enues number of distinct venues
CitV enmax maximum number of citations of any venue
CitV enavg average number of citations per venue
CitPubV enmax maximum number of citations per

publication of any venue
CitPubV entavg average number of citations per publication

per venue
nCoauthors number of co-authors
closeness closeness in the co-authorship network
PageRank PageRank in the co-authorship network

3.2 Scholar Features
The popularity of a scholar may depend on a multitude of

academic, social and even economic factors. We here focus
on academic factors, and relate the popularity of a scholar
to features that capture, quantitatively and qualitatively,
her productivity as a publication author, as well as her
importance in the co-authorship network. Unless otherwise
noted, these features are computed from the AM dataset.

The productivity of a scholar is here estimated by the
total number of publications over the period covered by the
dataset, as well as by the yearly publication rate, given by
the ratio of the total number of publications to the time
period between the first and last publications.

We also use the total number of unique publication venues
as well as different estimates of venue quality as scholar
features. We characterize the quality of the publication
venues of a scholar in terms of both average and maximum
quality, using two estimates of venue quality: total number
of citations of all publications and average number of
citations per publication, both computed for all publication
venues of the scholar. Thus, we use 4 features to capture
the quality of the publication venues of a scholart.

We also relate the popularity of a scholar to her
importance as a co-author. To that end, we build a
co-authorship network where edges between two authors are
added if they co-authored at least one publication. We assess
the importance of an author in this network using three
centrality metrics: degree, closeness and PageRank. The
vertex degree is the number of co-authors of the scholar.
The closeness is defined by the inverse of the shortest
path distances from the vertex to all other vertices in the
network7. The PageRank [33], in turn, can also be seen as
a measure of the influence of the scholar given her position
in the co-authorship network. Indeed, its use as an index of
scholar productivity has already been proposed [3, 22, 33].

In sum, we characterize scholars in terms of the 10
academic features shown in Table 2.

7In case of unreachable vertices, the shortest path distance
is assigned to the total number of vertices in the graph.

Table 3: Pearson correlations between features and
scholar popularity (after logarithm transformation).
Academic Experience Group
Feature [0;5] (5;10] (10;15] (15;20] (20,∞)
nPubs 0.544 0.656 0.704 0.753 0.813
yPubRate 0.194 0.383 0.528 0.572 0.592
nV enues 0.362 0.558 0.633 0.700 0.772
CitV enmax 0.330 0.503 0.551 0.562 0.556
CitV enavg 0.297 0.416 0.409 0.353 0.266
CitPubV enmax 0.435 0.604 0.649 0.642 0.634
CitPubV enavg 0.400 0.509 0.479 0.377 0.289
nCoauthors 0.340 0.474 0.572 0.639 0.705
closeness 0.230 0.385 0.546 0.621 0.705
PageRank 0.279 0.410 0.524 0.601 0.670

4. IMPACT OF ACADEMIC FEATURES
ON SCHOLAR POPULARITY

In this section, we analyze how each academic feature is
related to the scholar popularity. We start by quantifying
the correlations between each feature and popularity
(Section 4.1). Next, we make use of a regression model to
quantify the importance of each feature to popularity.

By assessing the relative importance of each feature to
popularity and quantifying the strength of their relationship,
we intend to provide insights that can drive the future
design of methods to predict the popularity of a scholar,
which in turn can be exploited for improving various
recommendation services (e.g., expert recommendation,
academic collaboration recommendation [4], etc).

4.1 Correlation Analysis
We quantify the correlations between each feature

and popularity using both the Pearson linear correlation
coefficient (ρp) and the Speaman’s rank correlation
coefficient (ρs) [16]. The latter is a nonparametric measure
of statistical dependence between two variables that does not
assume linear relationships. We note that, as observed for
popularity (Figure 1), all features exhibit great variability
across authors, even considering authors of a single group.
Thus, before computing these correlations, we first apply
a logarithm transformation on the scholar popularity and
feature values to reduce their large variability (as in [13]).

The Pearson correlation coefficients between each feature
and popularity for authors in each experience group are
shown in Table 3. The Spearman correlation coefficients are
very similar, and thus are omitted. For illustration purposes,
Figure 2 presents scatter plots of each feature and popularity
for scholars with more than 20 years of experience. Note the
log scale in both axes.

Table 3 shows that, for most features, the correlations
with popularity tend to strengthen with the scholar
experience. Less experienced scholars, who are still building
their careers, might be subject to other factors (e.g., lack
of funding, low visibility in the academic community) that
impact their popularity. The exceptions are the venue
quality features: their correlations with scholar popularity
tend to decrease for the most experienced scholars (scholars
with more than 20 years of experience), particularly for
features related to the average quality of the venues. This
might reflect that such scholars are already very known in
the community. Thus, their popularity is less influenced by
the venues where they publish.



(a) nPubs (b) yPubRate (c) nV enues (d) CitV enmax (e) CitV enavg

(f) CitPubV enmax (g) CitPubV enavg (h) nCoauthors (i) Closeness (j) PageRank

Figure 2: Correlations between academic features and popularity (scholars with more than 20 years of
experience; log scale on both axes).

Focusing on any experience group, the feature that is
most strongly correlated with popularity is the number
of publications8: the correlation reaches 0.81 for the
most experienced scholars (both Pearson and Spearman
coefficients). Even for scholars with at most 5 years of
experience, the correlation is still quite strong (above 0.5).
Similarly, the number of distinct venues is also strongly
correlated with popularity, particularly for scholars with
more than 5 years of experience.

Regarding the other features, we observe an inversion of
roles across the experience groups. For less experienced
scholars, features that capture the quality of the publication
venues, particularly the quality of the best venue (maximum
quality), are more strongly correlated with popularity than
the centrality metrics (notably PageRank and closeness),
possibly because these scholars are still building their
co-authorship network. Indeed, the number of distinct
co-authors is only moderately correlated with popularity
(ρp < 0.5) for scholars with up to 10 years of experience.
As the time of experience increases, all centrality metrics
become increasingly more correlated with popularity9. That
is, the scholar’s role in the co-authorship network becomes
more important. For the most experienced scholars, the
correlations between each of these features and popularity
are between 0.67 and 0.7. In contrast, as mentioned,
metrics related to venue quality become less correlated
with popularity as the time of experience increases. The
yearly publication rate is not very strongly correlated with
popularity for any experience group.

These correlations provide evidence of features that are
strongly related to scholar popularity, and thus can help
explain it. They may also be interpreted as providing
some “advice” for scholars at different stages of their
careers. For instance, based on the observed patterns, less
experienced scholars might want to focus on publishing in
the highest quality venues as given by the average number
of citations per publication and work on building their
citation networks. More experienced researchers, in turn,

8This is consistent with [1], but in a different context.
9This is consistent with [31], but again in a different context.

should never loose the focus on the number of publications,
but, given that their names are already known within their
communities, they might also be more flexible regarding
their choices of publication venues, occasionally publishing
in smaller events which can bring other benefits (e.g., close
interactions) compared to larger and possibly more highly
cited venues. We note, however, that these are mainly
speculative suggestions. We cannot claim any causality
relation from the correlations, as such claims would require
specific causality tests, which are left to future work.

We note that some of these features, despite being highly
correlated with popularity, might be redundant to explain
the popularity of a scholar, as they are strongly correlated
between themselves. For example, the Pearson correlation
between number of publications and number of venues is
above 0.75 for all experience groups, exceeding 0.9 for the
three most experienced groups. Both features may not
be needed jointly to capture scholar popularity. Which
of the considered features are redundant? Is there a
subset of the features that explain most of the popularity
variations observed across scholars? The answers to these
questions can provide key insights into which factors must be
considered to design effective and efficient scholar popularity
prediction models. We address these questions next.

4.2 Regression Analysis
We now make use of regression models to further assess

the relative importance of each academic feature to scholar
popularity. This investigation complements the correlation
analysis in the previous section, as our goals here are: (1)
identify which of the considered features are required to
build a model that describes reasonably well the popularity
of scholars in each experience group, (2) quantify the
importance of each feature, as well as (3) identify and
disregard redundant and unnecessary features.

We employ ordinary least squares (OLS) multivariate
linear regression model to estimate a response variable R
as a linear function of k predictor variables (i.e., features)
x1, x2, ... xk, that is:

log(R) = β0 + β1log(x1) + β2log(x2) + · · · βklog(xk)



Table 4: Quality of regression with all features and
after removing one feature at a time.
Regression Model Quality (R2)
Model [0;5] (5;10] (10;15] (15;20] (20,∞)
All Features 0.450 0.621 0.696 0.737 0.785
nPubs (-) 0.337 0.566 0.656 0.699 0.741
yPubRate (-) 0.449 0.619 0.694 0.736 0.785
nV enues (-) 0.449 0.621 0.696 0.736 0.785
CitV enmax (-) 0.450 0.621 0.696 0.736 0.785
CitV enavg (-) 0.450 0.621 0.696 0.736 0.785
CitPubV enmax (-) 0.445 0.617 0.694 0.735 0.784
CitPubV enavg (-) 0.430 0.591 0.666 0.709 0.763
nCoauthors (-) 0.444 0.617 0.693 0.733 0.781
closeness (-) 0.450 0.621 0.696 0.735 0.784
PageRank (-) 0.450 0.620 0.695 0.734 0.782

As in the previous section, we apply a logarithm
transformation in the raw data before building the model.
Thus, the response R and the predictors xi are, respectively,
the logarithms of the popularity and feature values. We
build one model for each experience group, determining
parameters β0, β1, · · ·, βk by the minimization of the least
squared errors over the data for all authors in the group.
We use all authors in the group to build each model as our
interest is in describing scholar popularity10. The quality of
the model is estimated by the coefficient of determination
R2, which captures the fraction of the total variation in the
response R that can be explained by the predictors [16]11.

The R2 values for the models produced using all academic
features (k = 10) for each experience group are shown in the
first line of Table 4. We note that the models can reasonably
well explain the popularity of scholars with more than 5
years of experience, with R2 exceeding 0.6 and reaching 0.78
for the most experienced group. For the least experienced
scholars, the R2 is smaller (0.45), though similar to other
regression based analysis of scholar citing behavior [13],
reflecting that, as previously mentioned, other factors are
also important to explain popularity for young researchers.

We tested the statistical significance of each model
parameter to identify those that can be disregarded. To that
end, we set up a series of hypothesis tests, one for each model
parameter βi, specified by a null hypothesis Ho : βi = 0
However, we found that most parameters are statistically
significant (i.e., non-zero), with 95% confidence level, for all
5 models. This implies that the effects of most features to
scholar popularity cannot be neglected. The only exceptions
(p-value> 0.05) are the coefficients associated with closeness
(in the model for scholars with 5-10 years of experience) and
CitV enmax (in the model for scholars with up to 5 years).

However, despite statistically significant (i.e., non-zero
effect), some features might still be redundant to the model
because they are strongly (linearly) correlated with other
features. In other words, the complete model, with 10
predictors, might be unnecessarily complex, with parameters
(βi) that are hard to interpret. Thus, our goal is to identify

10Alternatively, regression models could also be exploited to
predict scholar popularity, in which case the data should
first be split into training (model parameterization) and test
sets (model evaluation). The design of prediction models is
outside the present scope, and is left for future work.

11We also computed the adjusted R2, which takes into
account the number of predictors in the model, finding
quantitatively similar results in all cases.

Figure 3: Quality of regression models (R2) as
features are removed in order of importance.

the smallest set of non-redundant features from which we can
build a regression model that explains scholar popularity as
accurately as the full model.

To that end, we first assess the importance of each feature
individually to model quality by removing the feature,
building a new regression model with the other k=9 features,
and evaluating the impact of the removal on model quality.
Table 4 shows the quality of the models built when each
feature, identified by (-), is removed. Note that, consistently
for all groups, the removal of either the number of papers
– nPubs – or the average venue quality based on number
of citations per publication – CitPubV enueavg – produces
the greatest reductions on model accuracy. This suggests
that each of the other 8 features, despite being (strongly)
correlated with popularity, is redundant when taken in
combination with the others. That is, each of them can be
individually removed, as its impact on popularity is mostly
captured by some of the remaining features.

To identify the smallest set of features that jointly capture
the impact of all considered features on popularity, we
first sort all features by their importance, estimated by
the impact on R2 caused by its removal. Then, we build
new regression models removing one feature at a time
cumulatively, starting with the least important one. That is,
we first build a model with the 9 most important features;
then with the 8 most important features, and so forth up to
a model with a single (most important) feature.

Figure 3 shows the R2 of the models produced as
a function of the number of removed features, for all
experience groups. The removal of up to 8 features has
practically no impact on model accuracy. This means that
only two of the considered features are necessary to explain
all the variations in popularity that can be explained by the
full model (i.e., with 10 features). These two features are:
(1) the number of publications (nPubs), and (2) the average
quality of the publication venues estimated by number of
citations per publication in the venue (CitPubV enavg).

Table 5 shows the values of parameters βi in the models
produced with the two best features (including the intercept
β0). The parameters associated to both features are
statistically significant (i.e., non-zero) with 95% confidence
for all models. Moreover, the correlations between both
features (nPubs and CitPubV enavg) are very weak (near
zero): the Pearson correlations ρp are 0.11, 0.15, 0.07,-0.02
and -0.05 for the [0;5], (5;10]; (10;15]; (15;20] and (20; ∞)
groups, respectively. Thus, the impact of these two features
on scholar popularity mostly complement each other.



Table 5: Coefficients βi of the regression models with
the two best features.
Predictor [0;5] (5;10] (10;15] (15;20] (20,∞)
Intercept (β0) 0.004 -0.050 -0.240 -0.409 -0.486
nPubs 1.251 1.100 1.083 1.155 1.250
CitPubV enavg 0.455 0.756 1.013 1.082 1.029

We note that nPubs is clearly the most important feature
to explain scholar popularity, and this importance increases
with the scholar experience. This can be attested by the
correlations observed in Table 3, which are higher for nPubs
and increase with the scholar experience. Alternatively,
we can quantify the relative importance of each feature by
running two linear regressions with a single predictor. The
R2 of the produced models represent the fractions of the
total variation in scholar popularity that can be explained
by each considered predictor individually12. These R2 values
are shown in Table 6. Note that if we compare the R2 of
the single-predictor models with the R2 of the two-predictor
models (also shown in the table), we conclude, once again,
that: (1) nPubs clearly can explain a much larger fraction of
the total variation that can be explained for all experience
groups; and (2) the relative importance of CitPubV enavg
decreases for the two most experienced groups. These results
are consistent with our discussion in Section 4.1.

5. TEMPORAL DYNAMICS OF SCHOLAR
POPULARITY

The previous section focused on the total popularity
acquired by a scholar in her career. We now analyze the
evolution of scholar popularity over time. Our goals are
twofold: (1) identify common profiles of popularity temporal
dynamics (Section 5.1); and (2) characterize scholars in each
profile in terms of their academic features (Section 5.2).

With those goals, we aim at not only producing valuable
knowledge to the Scientometrics field (we are not aware
of any similar prior study), but also drawing insights that
can help the design of effective scholar popularity prediction
methods. For instance, in [26], the authors concluded that
the prediction of popularity of on-line content can greatly
benefit from the knowledge of popularity profiles. This is
because, given the diversity of observed profiles, building a
specialized prediction model for each profile produces more
accurate predictions. Although this observation was made
in a different context, the same general principle might hold
also in the context of scholar popularity.

We use our MS-AR dataset to study popularity temporal
dynamics, focusing on scholars in the two most experienced
groups, i.e., scholars with more than 15 years of experience,
as their long-term popularity dynamics have already
stabilized. As shown in Table 1, each of these two groups
accounts for at least 60,000 popularity time series extracted
from the MS-AR dataset.

5.1 Identifying Popularity Profiles
To identify profiles of popularity dynamics, we make use of

a recently proposed time series clustering algorithm, called
K-Spectral Clustering (KSC) [35], which was used to study

12We note that the R2 of the single-predictor model is equal
to the square of the linear correlation between predictor and
response.

Table 6: Relative importance of each of the two best
features to popularity: R2 of regression models with
a single predictor and with two predictors.
Predictors [0;5] (5;10] (10;15] (15;20] (20,∞)
nPubs 0.30 0.43 0.50 0.57 0.66
CitPubV enavg 0.16 0.26 0.23 0.14 0.08
Both 0.41 0.60 0.68 0.72 0.77

the patterns of popularity dynamics of on-line content. As
far as we know, this is the first time it is used to understand
popularity dynamics of scholarly research.

The KSC algorithm groups times series based on the shape
of the curve, and thus respects invariants of scale in the
popularity axis and shifts in the time axis. That is, two
scholars that have their popularities evolving according to
similar processes (e.g., linear growth) will be assigned to the
same cluster by KSC, regardless of the popularity values.
For example, two authors that have stable popularity over
time except for a peak in a single year will be clustered
together, regardless of the time when the peak occurred and
the peak value. These invariants allow us to focus on the
patterns of popularity evolution, rather than on specific time
intervals and popularity values that lead to such patterns.

KSC requires that all time series have the same number
of points. Thus, we represent each scholar in an
experience group by a vector s of n elements, with each
element representing the scholar popularity (i.e., number
of citations) in one year, starting in the year of its first
publication. We define n to be the minimum number of years
of experience in the group, so as to meet the requirement of
equal size time series. Although there are scholars with more
years of experience in each group, looking into the first 15
or 20 years of experience should be enough to understand
their long-term popularity dynamics.

KSC is mostly a direct translation of the K-Means
algorithm [35], except for the distance metric used to capture
the similarity between the popularity curves of two scholars
with scale and time shifting invariants. Given the popularity
curves of scholars a and b represented by vectors sa and sb,
respectively, KSC uses the following distance metric:

dist(sa, sb) = min
α,q

||sa − αsb(q)||
||sa||

, (1)

where sb(q) is the operation of shifting vector sb by q units

and || · || is the l2 norm13. For a fixed q, the exact solution
for α, obtained by computing the minimum of dist, is: α =
sTa sb(q)
||sb||

. However, there is no simple way to compute q. Thus,

in our implementation of KSC14, we search for the optimal
value of q considering all integers in the range (−n, n)15. We
refer the reader to the original paper for more details [35].

Like K-means, KSC requires the choice of a number k
of clusters. We chose this number primarily based on
the βCV clustering quality metric [36]. The βCV is the
ratio of the coefficient of variation (CV)16 of the distances

13The l2 norm of a vector sk is ||sk|| =
√∑n

i=1 s
2
k(i).

14We used of an open source implementation of the algorithm
available at: http://github.com/flaviovdf/pyksc

15Shifts are performed in a rolling manner, where the element
at the end of the vector returns to the beginning, to maintain
the symmetric nature of dist(sa, sb).

16CV is the ratio of standard deviation to the mean.



Figure 4: βCV clustering quality metric (scholars
with more than 20 years of experience).

between members of the same cluster (intra-cluster CV)
to the CV of the distances between members of different
clusters (inter-cluster CV). The βCV should be computed
for increasing values of k. When it stabilizes, it is expected
that the variabilities in the intra and inter-cluster distances
remain stable, implying that adding more clusters should be
of little help to understand the variability in the dataset.

5.2 Profile Characterization
For both experience groups analyzed, we found that the

βCV stabilizes for k = 5, as shown in Figure 4 for one
group. This choice of number of clusters also agreed with
other heuristics we employed, including visual inspection.
Figure 5 shows the centroids of the 5 clusters identified for
scholars in the (20,∞) group. Each centroid corresponds to
an “average” popularity curve for scholars in the cluster, and
represents a different profile of popularity dynamics. Scales
on both axes are omitted to emphasize the scale and time
shifting invariants. The fraction of scholars in each cluster is
provided in the caption of the figure. Interestingly, we found
the same number of clusters k and very similar centroids also
for scholars in the (15;20] group (omitted).

Before discussing the identified profiles, we note that
they may not perfectly match the popularity curves of all
scholars analyzed, as there might be variations within each
cluster. Indeed, our goal is not to perfectly model the
popularity evolution of all scholars, but rather capture the
most prevalent trends, respecting time shift and volume
invariants. To illustrate this point, Figure 6 shows the
popularity time series of one example author in each cluster.

Centroids C0, C1 and C2, shown in Figures 5(a-c),
correspond to profiles of scholars who succeed in becoming
increasingly popular, acquiring more and more citations
with time. These profiles account for 66% of all scholars.
Note that the sharp decay in the last years might be just an
artifact of recent publications having fewer citations. Also,
recall that each centroid represents an “average” popularity
curve for all scholars in the cluster. By manually inspecting
the popularity curves for various scholars in these three
clusters, we found that the decay at the end was not clear
in several individual curves, although others did exhibit it.

In particular, we note that many of the scholars grouped
in cluster C0 exhibit roughly stable popularity over time
(with occasional peaks and decays), after an initial increase
during their first years of activity (see example in Figure
6-a). Clusters C1 and C2, in turn, are more dominated by
scholars whose popularity curves exhibit a more clear growth

trend over time, differing basically in the growth rates.
In contrast, profiles C3 and C4, shown in Figures 5(d-e),
describe scholars who grow in popularity, experiencing a
clear peak, but fail to remain popular afterwards. Once
again, the main difference between these two profiles is on
the growth and decay rates before and after the peak. Note
that, in general, the centroids in Figure 5 approximate well
the general trends of the individual curves in Figure 6.

We next characterize the scholars in each profile by
analyzing the distributions of academic features computed
for scholars in each profile. Since the popularity curves
were extracted from the MS-AR dataset, and given the
discrepancies observed in both MS-AR and AM datasets,
we used only data from the MS-AR service to build
these distributions. Specifically, we used the citation
and publication time series collected for each scholar to
compute the scholar’s total citation count and total number
of publications. The former accounts for the scholar
popularity, as defined in this paper, and the latter is
the most important academic feature (among those we
analyzed) to explain scholar popularity (see Section 4.2).

Figure 7 summarizes the distributions of popularity and
number of publications of scholars in each profile with box
plots. In each box plot, the central rectangle spans the
first to the third quartiles, the segment inside is the median
(second quartile), whereas whiskers above and below the
rectangle represent the 9th and 91th percentiles. Each box
plot also shows the mean value of the distribution. We focus
the discussion on the (20;∞) group, though the conclusions
hold for the other experience group as well.

In general, we find that the most popular scholars as
well as those with the largest numbers of publications are
in cluster C1. For both features, the median, mean, third
quartile and 91th percentile are larger for this cluster than
for the others. C1 is also the largest cluster, with 27% of
all analyzed popularity curves in the group. As mentioned,
these are scholars who succeed in acquiring more and more
popularity with time. For example, the mean popularity
of these scholars is 535 citations, and the mean number
of publications is 61. Moreover, for 9% of the authors in
this cluster, the number of citations exceeds 1,410, and the
number of publications surpasses 144 (91th percentiles).

In contrast, scholars in cluster C2, who also exhibit a
clear trend towards increasing popularity over time (as
shown in Figure 5-c), have distributions much more skewed
towards fewer citations and fewer publications. Note the
concentration of both distributions around smaller values
and the smaller span from the 9th to 91th percentiles,
compared to the distributions for C1. For comparison
purposes, the mean popularity in this cluster is only 143
citations, whereas the mean number of publications is 31.

Cluster C0, which accounts for 23% of all scholars in the
group, lie between both C1 and C2. The mean popularity
and the mean number of publications are 393 and 38,
respectively. Note, however, that some of these scholars do
succeed in becoming very popular: the 9% most popular
scholars in this cluster have at least 1,001 citations.

In contrast, clusters C3 and C4, which exhibit a clear
decay in popularity after the peak, consists of scholars who
tend to have far fewer papers and thus become much less
popular than scholars in the other clusters. C3 and C4
also exhibit much less variability across scholars in terms
of both features (note the smaller span between the 9th and



(a) C0 (23% of the scholars) (b) C1 (27% of the scholars) (c) C2 (16% of the scholars)

(d) C3 (19% of the scholars) (e) C4 (15% of the scholars)

Figure 5: Profiles of popularity dynamics (scholars with more than 20 years of experience).

(a) Example scholar in C0 (b) Example scholar in C1 (c) Example scholar in C2

(d) Example scholar in C3 (e) Example scholar in C4

Figure 6: Examples of popularity time series in each profile (scholars with more than 20 years of experience).

91th percentiles). In particular, scholars in C4 are the least
popular ones in the set, and the popularity distribution for
this cluster is very concentrated around the mean. Similarly,
they tend to have very few publications. For example,
the mean popularity and the mean number of publications
of scholars in C3 are 101 and 15, respectively, whereas
corresponding values for scholars in C4 are only 13 and 9.

One important observation can be drawn from these
results. For most cases, scholars who do not publish
frequently (captured by the number of publications), will

likely attract only some attention over small time windows
(i.e., their popularity will follow the trends of C3 and C4).
Thus, such scholars’s research will likely have little impact
over time as measured by the number of citations. This
result reflects the culture of “publish or perish”, which serves
as an incentive for scholars to continue publishing new
research throughout their careers, and remain getting cited
over time (as those in C0 and C1). While this is not a
rule per se, since there are some scholars with very few
publications who remain popular over time, it shows that, in



(a) Popularity (b) Number of publications

Figure 7: Distributions of popularity and number
of publications for each profile (scholars with more
than 20 years of experience).

a field like Computer Science, remaining active (publishing)
over time is very important for popularity.

6. CONCLUSIONS AND FUTURE WORK
We have investigated the importance of various academic

features to scholar popularity. Two large scholarly datasets
were used to quantify the impact of features on total
popularity (citation count), and uncover trends of popularity
temporal dynamics. Our analyses showed that, even though
most of the considered features are strongly correlated with
popularity, only two features - number of publications and
average quality of the scholar’s publication venues – are
needed to explain practically all the variation in popularity
across different scholars. We also uncovered five profiles of
scholar popularity dynamics. Three of them correspond to
scholars who succeed in becoming increasingly popular with
time, varying only in terms of the popularity growth rate,
while the others correspond to scholars who fail to keep being
cited after a popularity peak. Our results also suggest that
scholars who succeed in getting cited over time most likely
are those who remain publishing through their careers.

Future work includes comparing the popularity dynamics
of scholars in different research fields and different countries,
extending our study to other popularity metrics, and
developing scholar popularity prediction methods.
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